
Abstract. The geometries of a set of small molecules were
optimized using eight different exchange–correlation (xc)
potentials in a few different basis sets of Slater-type
orbitals, ranging from a minimal basis (I) to a triple-zeta
valence basis plus double polarization functions (VII).
This enables a comparison of the accuracy of the xc
potentials in a certain basis set, which can be related to
the accuracies of wavefunction-based methods such as
Hartree–Fock and coupled cluster. Four different checks
are done on the accuracy by looking at the mean error,
standard deviation, mean absolute error and maximum
error. It is shown that the mean absolute error decreases
with increasing basis set size, and reaches a basis set limit
at basis VI. With this basis set, the mean absolute errors
of the xc potentials are of the order of 0.7–1.3 pm. This
is comparable to the accuracy obtained with CCSD and
MP2/MP3 methods, but is still larger than the accuracy
of the CCSD(T) method (0.2 pm). The best performing
xc potentials are found to be Becke–Perdew, PBE and
PW91, which perform as well as the hybrid B3LYP
potential. In the second part of this paper, we report the
optimization of the geometries of five metallocenes with
the same potentials and basis sets, either in a nonrela-
tivistic or a scalar relativistic calculation using the
zeroth-order regular approximation approach. For the
first-row transition-metal complexes, the relativistic
corrections have a negligible effect on the optimized
structures, but for ruthenocene they improve the opti-
mized Ru–ring distance by some 1.4–2.2 pm. In the
largest basis set used, the absolute mean error is again of
the order of 1.0 pm. As the wavefunction-based methods
either give a poor performance for metallocenes (Har-
tree–Fock, MP2), or the size of the system makes a
treatment with accurate methods such as CCSD(T) in a
reasonable basis set cumbersome, the good performance
of density functional theory calculations for these
molecules is very promising; even more so as density

functional theory is an efficient method that can be used
without problems on systems of this size, or larger.
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Introduction

Before one can perform a quantum chemical calculation,
one needs to have a structure of the molecule; for
example, one needs to know where the atoms are posi-
tioned in space (its geometry). The accuracy with which
these geometries can be predicted by different quantum
chemical methods is a very useful thing to know,
allowing an estimate of the reliability of a computed
geometry.

In two recent papers, Helgaker and coworkers [1, 2]
presented a systematic investigation of the accuracy
obtainable with wavefunction-based methods, applying
a hierarchy of basis sets and methods on a set of 19
small closed-shell molecules.1 They used Hartree–Fock
(HF), configuration interaction (CISD), Møller–Plesset
(MP2, MP3, MP4) and coupled-cluster methods [CCSD,
CCSD(T)] in Dunning’s correlation-consistent basis sets
(cc-pVDZ, cc-pVTZ, cc-pVQZ) [3], and looked at the
mean error, standard deviation, mean absolute error and
maximum error. HF is shown to result always in a too
short bond distance, while the inclusion of the electron
correlation tends to increase it. Increasing the basis set
size tends to decrease the bond distance again. The best
results are obtained when one uses the CCSD(T)
method, either in the cc-pVTZ or the cc-pVQZ basis,
with an accuracy (0.22 pm) that is comparable to the
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experimental uncertainty. In another paper, Koch et al.
[4] investigated the molecular structure of ferrocene with
the same methods, and found again good agreement
with the experimental structure.

In this study, a similar systematic investigation is
presented where the accuracy of geometries as predicted
by density functional theory (DFT) is studied. The
influence of the basis set, treatment of core electrons and
relativistic corrections has been investigated for several
currently available exchange–correlation (xc) potentials.
The same set of 19 small molecules is used in the first
part, to enable not only a comparison with experimental
data but also with the wavefunction-based results ob-
tained by Helgaker and coworkers. For these molecules,
the influence of including the core electrons in the
optimizations has been investigated. Although some
studies [5, 6, 7, 8] have already focused on the accuracy
of geometries by some xc potentials, a systematic
investigation of this kind has not been reported before
(to the best of our knowledge). This is most certainly the
case for the Slater-type basis sets used in ADF, as well as
for the comparison with the study by Helgaker and
coworkers.

Besides this set of molecules, a set of metallocene
molecules was also used, where not only the inclusion of
core electrons was investigated, but also the effect of
scalar relativistic corrections (with the zeroth-order
regular approximation, ZORA, [9, 10] Hamiltonian).2

All of these calculations were performed in the standard
available basis sets, ranging from a single-zeta valence
basis set (SZV, I) to a triple-zeta valence basis set plus
double polarization functions (TZ2P, VII). As B3LYP
[11] is not a pure DFT potential, and needs a portion of
HF exchange, it can not be used in the ADF program.
To check the accuracy of it, as well as to compare the
ADF basis sets to the basis sets used in the work of
Helgaker et al. [1], the geometry optimizations were also
performed with the B3LYP and BLYP potentials in the
cc-pVDZ and cc-pVTZ basis sets using the HONDO98
[12, 13] program.

Computational details

In the ADF program [9, 14], standard basis sets are available
ranging from small (SZV, I) to large (TZ2P, VII), with for the basis
sets up to TZ2P (V) the option of either including (all electron) or

excluding (frozen core) the core electrons explicitly in the calcula-
tions. In the frozen-core basis sets, there are still basis functions
assigned to the core electrons; the basis functions of the valence
electrons are then explicitly orthogonalized to them. As the calcu-
lations are significantly faster when the core electrons are not
included, this is normally the preferred option. For clarity and the
sake of completeness, a short description of the basis sets is given in
Table 1, for hydrogen, carbon and iron.

The following standard available pure xc potentials were
examined: local density approximation (LDA), Becke88 exchange
[15] combined with Perdew86 correlation [16] (Becke–Perdew),
BLAP3 [17], Becke88 exchange [15] with Lee–Young–Parr corre-
lation [18] (BLYP), Perdew–Burke–Ernzerhof (PBE) [19], Perdew–
Wang (PW91) [20, 21], revised Perdew–Burke–Ernzerhof
(REVPBE) [22] and RPBE [23].

To compare the basis sets, the cc-pVDZ and cc-pVTZ basis sets
were used also for the BLYP potential using HONDO98. More-
over, the B3LYP potential was also used with this program in the
same basis sets to enable a rough comparison with the pure DFT xc
potentials.

Scalar relativistic corrections can be included in the calculations
quite easily in ADF, using the ZORA approach [9, 10], which is
generally found to give an accurate description of the relativistic
effects. Although spin–orbit coupling is possible also with the
ZORA approach, this effect was not included since the gradients
are not implemented yet; therefore it is not possible to optimize the
geometries directly.

Several statistical measures were used to quantify the accuracy
of the methods. The difference between the calculated, Rcalc

i , and
experimental, Rexp

i , bond length gives the error, Di:

Di ¼ Rcalc
i � Rexp

i : ð1Þ

For each basis set (if possible, both with and without including the
core electrons explicitly) and xc potential, the mean error, D), the
standard deviation in the errors, Dstd, the mean absolute error, D)abs,
and the maximum error, Dmax, were calculated:

�DD ¼ 1

n

Xn

i¼1
Di

Dstd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn

i¼1
Di � �DD
� �2

s
;

�DDabs ¼
1

n

Xn

i¼1
Dij j;

Dmax ¼ max Dij j :

ð2Þ

Each measure characterizes a specific aspect of the performance
of the xc potentials and basis sets. The two first measures
characterize the distribution of errors about a mean value D) for
a given xc potential in a certain basis set, thus quantifying
both systematic and nonsystematic errors. The mean absolute
error represents the typical magnitude of the errors in the
calculations, while the maximum error indicates how large the
errors can be.

2 The metallocene set: manganocene, ferrocene, cobaltocene, nick-
elocene and ruthenocene

Table 1. ADF basis set description

I II III IV V VI VII

H S1 S2 S2P1 S3P1 S3P1D1 S4P2D1 S6P3D2

C S2P1 S4P2 S4P2D1 S5P3D1 S5P3D1F1 S6P4D2F1 S8P6D3F2

C1sa S2P1/S1 S3P2/S1 S3P2D1/S1 S4P3D1/S1 S4P3D1F1/S1 – –
Fe S3P3D1 S8P5D3 – S9P5D3 – S11P7D5F1 –
Fe2pa – S6P4D3/S2P1 – S7P4D3/S2P1 – – –

aX/Y:X are the valence basis functions, Y the orthogonal core functions
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Small molecules

The experimental values for the bond lengths of the set
of small molecules are given in Table 2, but before
reporting the statistical results for all small molecules, it
may be instructive to report the optimized bond length
for one particular molecule (N2 in this case) for all dif-
ferent xc potentials and basis sets (Table 3). A general
improvement with increasing basis set size is observed.

The mean errors for the eight xc potentials in basis
sets I–VII are given in Table 4, both in an all-electron
and a frozen-core basis if available. In all cases, the bond
lengths are on average overestimated, with an
improvement of the results as the basis set size is in-
creased. For the frozen-core basis sets, the average of the
mean errors for the eight xc potentials improves grad-
ually from 5.63 pm in basis I to 0.92 pm in basis set V.
The same trend is observed for the all-electron basis sets,
which show still an improvement on going from basis

set V to VI of some 0.2 pm. However, going from basis
set VI to VII, no further improvement is observed,
which seems to indicate that the basis set limit has been
reached (at least concerning the accuracy of geometries).
The difference between the all-electron and frozen-core
basis sets is quite small; the all-electron basis sets seem to
perform slightly better in the smaller basis sets, while the
frozen-core basis set seems to give slightly better results
in basis sets IV and V.

When looking at the mean errors, the LDA seems to
give the best performance, with a mean error, for in-
stance, in basis sets VI and VII of only 0.17 pm. This
value is of the same order of magnitude as was found for
CCSD(T). The other xc potentials are less accurate
(about 0.6–1.1 pm), but still give results comparable
with CCSD in the largest basis set. The worst results are
obtained with the BLYP, REVPBE and RPBE poten-
tials, which are the only ones that still give a mean error
that is larger than 1 pm in the largest basis set.

The standard deviations in the mean errors is given in
Table 5, and show the same improving trend on
increasing the basis set size. Also here the frozen-core
and all-electron basis sets perform equally well. There
are some small differences, but not as large as the ones
observed between basis sets of different size, i.e., whereas
the former differences are of the order of 0.1 pm (com-
paring, for instance, Becke–Perdew in basis set IV), the
latter are a few times larger (comparing, for instance, the
frozen-core Becke–Perdew results in basis sets III and
IV, respectively). The LDA no longer performs best in
this respect. Although it had the smallest mean error of
all potentials, the standard deviation belonging to it is
the largest (about 1.5 pm in basis sets V–VII) of all the
xc potentials in the larger basis sets; in the medium basis
sets, also a large standard deviation is found for the
BLAP3 potential. In fact, for the larger basis sets, all

Table 3. Deviation (pm) of the optimized N2bond length from the
experimental value of 109.77 pm

Exchange–
correlation
potential

I II III IV V VI VII

Frozen core
Becke–Perdew +10.52 +2.19 +0.75 +0.72 +0.40 – –
BLAP3 +10.99 +2.18 +0.73 +0.68 +0.33 – –
BLYP +10.90 +2.36 +0.90 +0.82 +0.48 – –
LDA +9.88 +1.42 +0.13 +0.02 –0.27 – –
PBE +10.42 +2.17 +0.74 +0.75 +0.44 – –
PW91 +10.43 +2.01 +0.60 +0.59 +0.27 – –
REVPBE +10.54 +2.43 +0.96 +1.03 +0.71 – –
RPBE +10.58 +2.54 +1.05 +1.13 +0.81 – –
All electron
Becke–Perdew +10.42 +2.18 +0.79 +0.79 +0.46 +0.39 +0.42
BLAP3 +10.86 +2.18 +0.78 +0.75 +0.38 +0.29 +0.32
BLYP +10.78 +2.34 +0.94 +0.88 +0.53 +0.42 +0.45
LDA +9.73 +1.36 +0.11 +0.04 )0.26 –0.33 –0.29
PBE +10.32 +2.15 +0.77 +0.82 +0.49 +0.42 +0.44
PW91 +10.31 +2.00 +0.63 +0.64 +0.32 +0.24 +0.27
REVPBE +10.51 +2.44 +1.01 +1.10 +0.78 +0.71 +0.73
RPBE +10.55 +2.54 +1.09 +1.20 +0.87 +0.80 +0.81

Table 2. Experimental bond lengths (picometers; taken from
Ref. [1])

Molecule Bond Bond length Molecule Bond Bond length

C2H2 CH 106.2 HCN CH 106.5
C2H2 CC 120.3 HCN CN 115.3
C2H4 CH 108.1 HF HF 91.7
C2H4 CC 133.4 HNC NH 99.4
CH2 CH 110.7 HNC CN 116.9
CH2O CH 109.9 HNO NH 106.3
CH2O CO 120.3 HNO NO 121.2
CH4 CH 108.6 HOF OH 96.6
CO CO 112.8 HOF OF 143.5
CO2 CO 116.0 N2 NN 109.8
F2 FF 141.2 N2H2 NH 102.8
H2O OH 95.7 N2H2 NN 125.2
H2O2 OH 96.7 NH3 NH 101.2
H2O2 OO 145.6 O3 OO 127.2

Table 4. Mean errors (pm)

Exchange–correlation
potential

I II III IV V VI VII

Frozen core
Becke–Perdew 5.58 4.00 1.49 1.24 0.90 – –
BLAP3 6.27 4.16 1.63 1.38 1.02 – –
BLYP 6.09 4.32 1.82 1.55 1.21 – –
LDA 4.65 3.26 0.83 0.61 0.28 – –
PBE 5.44 3.97 1.43 1.19 0.87 – –
PW91 5.47 3.81 1.31 1.08 0.74 – –
REVPBE 5.75 4.28 1.68 1.45 1.13 – –
RPBE 5.76 4.36 1.76 1.54 1.21 – –
Average 5.63 4.02 1.49 1.26 0.92 – –
All electron
Becke–Perdew 5.54 3.96 1.44 1.30 0.98 0.81 0.82
BLAP3 6.20 4.09 1.58 1.44 1.09 0.92 0.91
BLYP 6.00 4.24 1.76 1.61 1.26 1.09 1.08
LDA 4.55 3.16 0.74 0.62 0.31 0.17 0.17
PBE 5.36 3.93 1.37 1.29 0.93 0.78 0.78
PW91 5.38 3.76 1.25 1.14 0.82 0.66 0.65
REVPBE 5.65 4.23 1.66 1.52 1.20 1.04 1.04
RPBE 5.76 4.33 1.74 1.61 1.28 1.12 1.12
Average 5.56 3.96 1.44 1.32 0.98 0.82 0.82
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potentials give more or less equal standard deviations
except three: BLAP3, BLYP and LDA. As BLYP was
also one of the worst potentials in the case of mean
errors, it seems that it cannot be used with great confi-
dence for obtaining accurate geometries.

The mean absolute errors are given in Table 6. Just
like the mean errors and the standard deviations, they
are shown to improve gradually with increasing basis set
size. Again there is hardly any difference between the
results from either a frozen-core or an all-electron basis
set; the difference between the averages of the frozen
core and the all electron in basis set IV is for instance
0.06 pm, while the difference between the averages be-
tween basis sets III and IV for the frozen core is

0.23 pm. The results of basis set V are still improved on
going to VI, but increasing the basis set even more (VII)
does not improve them any more. So, where the
accuracy of geometries is concerned, the basis set limit
seems to be reached already in basis set VI.

Becke–Perdew, PBE and PW91 are found to be the
best xc potentials, as they are the only ones that con-
sistently give better results than the average for all basis
sets, both in the frozen-core and in the all-electron basis
sets. The mean absolute error in the basis set limit of
0.89 pm (Becke-Perdew), 0.86 pm (PBE) and 0.75 pm
(PW91), are comparable to or slightly better than CCSD
results (0.89 pm) in the largest basis set used by Helga-
ker et al. (cc-pVQZ). However, these deviations are still
larger than the accuracy of the CCSD(T) method (0.1–
0.2 pm), which may surpass even experimental accura-
cies. Although the LDA performed best for the mean
error, in this case it performed the worst, with an aver-
age error of about 1.3 pm in the larger basis sets. In fact,
for the all-electron basis sets, the LDA does not improve
upon increasing the basis set size after basis set III.

The maximum errors for the xc potentials in a certain
(frozen-core/all-electron) basis set are given in Table 7.
These results do not show the gradual improvement as
the basis set is increased; for instance, going from basis I
to basis II the average maximum error increases from
10.7 to 13.4 pm; however, after increasing the basis set
even more, it decreases again gradually, except for
the LDA, which exhibits an oscillatory pattern. As the
difference between basis sets VI and VII is small, these
results also show that the basis set limit has been
reached.

The difference between the frozen-core and all-elec-
tron basis sets is not negligible for the maximum error,
at least not for the small and medium-sized basis sets.
For basis set V, the difference is negligible again for

Table 7. Maximum errors (pm)

Exchange–
correlation
potential

I II III IV V VI VII

Frozen core
Becke–Perdew 10.52 13.16 3.35 2.51 1.81 – –
BLAP3 11.96 15.61 6.15 5.44 4.68 – –
BLYP 11.32 14.91 5.43 4.73 3.95 – –
LDA 9.88 9.69 3.30 2.32 2.85 – –
PBE 10.42 12.97 3.31 2.11 1.85 – –
PW91 10.43 12.83 3.23 2.13 1.64 – –
REVPBE 10.60 13.90 3.89 2.96 2.11 – –
RPBE 10.58 14.19 4.21 3.25 2.40 – –
Average 10.71 13.41 4.11 3.18 2.66 – –
All electron
Becke–Perdew 10.42 13.42 3.98 2.68 1.82 1.75 1.75
BLAP3 11.82 15.88 6.72 5.36 4.66 4.10 4.18
BLYP 11.19 15.14 5.91 4.66 3.93 3.38 3.44
LDA 9.73 9.89 2.73 2.29 2.26 2.75 2.72
PBE 10.32 13.25 3.56 2.57 1.86 1.80 1.79
PW91 10.31 13.12 3.54 2.41 1.75 1.59 1.57
REVPBE 10.51 14.23 4.69 3.31 2.37 1.89 1.87
RPBE 10.73 14.53 5.03 3.63 2.49 2.00 2.22
Average 10.63 13.68 4.52 3.36 2.64 2.41 2.44

Table 6. Mean absolute errors (pm)

Exchange–
correlation
potential

I II III IV V VI VII

Frozen core
Becke–Perdew 5.68 4.00 1.51 1.24 0.93 – –
BLAP3 6.27 4.17 1.64 1.38 1.03 – –
BLYP 6.13 4.32 1.82 1.55 1.21 – –
LDA 5.05 3.28 1.21 1.14 1.28 – –
PBE 5.61 3.97 1.45 1.20 0.92 – –
PW91 5.57 3.82 1.34 1.09 0.80 – –
REVPBE 5.87 4.28 1.68 1.45 1.13 – –
RPBE 5.78 4.36 1.76 1.54 1.21 – –
Average 5.75 4.03 1.55 1.32 1.06 – –
All electron
Becke–Perdew 5.64 3.98 1.45 1.30 1.00 0.88 0.89
BLAP3 6.20 4.13 1.59 1.44 1.09 0.93 0.93
BLYP 6.06 4.26 1.76 1.61 1.26 1.09 1.09
LDA 4.97 3.20 1.00 1.11 1.24 1.31 1.29
PBE 5.55 3.95 1.38 1.29 0.97 0.86 0.86
PW91 5.49 3.79 1.27 1.15 0.87 0.76 0.75
REVPBE 5.68 4.25 1.66 1.52 1.20 1.05 1.05
RPBE 5.78 4.35 1.74 1.61 1.28 1.12 1.12
Average 5.67 3.99 1.48 1.38 1.11 1.00 1.00

Table 5. Standard deviations (pm)

Exchange–correlation
potential

I II III IV V VI VII

Frozen core
Becke–Perdew 3.47 3.80 0.94 0.61 0.59 – –
BLAP3 3.51 4.64 1.64 1.35 1.13 – –
BLYP 3.55 4.32 1.38 1.09 0.89 – –
LDA 3.59 2.85 1.28 1.21 1.46 – –
PBE 3.55 3.75 0.89 0.56 0.60 – –
PW91 3.45 3.76 0.92 0.57 0.56 – –
REVPBE 3.49 4.03 0.97 0.61 0.53 – –
RPBE 3.35 4.07 1.00 0.65 0.52 – –
Average 3.50 3.90 1.13 0.83 0.79 – –
All electron
Becke–Perdew 3.43 3.92 1.00 0.63 0.58 0.59 0.59
BLAP3 3.48 4.74 1.86 1.45 1.21 1.06 1.09
BLYP 3.53 4.40 1.55 1.16 0.95 0.83 0.85
LDA 3.56 2.94 1.04 1.17 1.39 1.53 1.50
PBE 3.55 3.88 0.92 0.63 0.57 0.61 0.61
PW91 3.44 3.87 0.96 0.62 0.57 0.57 0.58
REVPBE 3.33 4.15 1.11 0.67 0.55 0.53 0.53
RPBE 3.39 4.22 1.16 0.71 0.55 0.51 0.53
Average 3.46 4.02 1.20 0.88 0.80 0.78 0.79

37



some potentials (e.g. Becke–Perdew, BLAP3 or PBE),
while for others (LDA, REVPBE) there exists a large
difference.

As was found for the mean absolute errors, there are
three potentials (Becke–Perdew, PBE and PW91) that
consistently give better results than the average for a
certain basis set. For these three, the maximum error in
the basis set limit (1.75, 1.79 and 1.57 pm, respectively,
which was observed for the CH bond of CH2O) is
comparable to MP2 (1.67 pm) and MP4 (1.48 pm) in the
largest basis set studied by Helgaker et al., and is sub-
stantially better than the CCSD method in the same
basis (3.07 pm). Again, the accuracy of the CCSD(T)
method (with a maximum error of 1.20 pm) is better
than that of the best xc potentials.

Comparison with Dunning’s basis set and the B3LYP
potential

The results obtained with Dunning’s basis sets for either
the BLYP or the B3LYP potential are given in Table 8.
Comparing the BLYP results in the cc-pVDZ basis set
(e.g. [s3p2d1] for carbon) with its ADF counterpart (III
[s4p2d1]), the mean absolute error of cc-pVDZ is slightly
larger than basis set III; however, the maximum error is
much smaller for cc-pVDZ than for basis III. The same
inconsistencies show up for the mean error and its
standard deviation; although the mean error is more or
less comparable (1.76 for cc-pVDZ versus 1.81 pm for
III), the standard deviations are quite different (1.06 for
cc-pVDZ versus 1.55 pm for III). Therefore, as BLYP
does not perform equally well in the cc-pVDZ and the
ADF-III basis set, the B3LYP results (in the cc-pVDZ
basis) cannot be compared directly with the pure xc
potentials in basis III.

The size of the cc-pVTZ basis set ([4s3p2d1f] for
carbon) is more or less between that of basis sets V
([5s3p1d1f]) and VI ([6s4p2d1f]) of ADF. This is re-
flected in the mean absolute error of the BLYP potential
in the cc-pVTZ basis set (1.14 pm), which is somewhere
between the results for basis sets V (1.26 pm) and VI
(1.09 pm). Also the maximum error shows this trend:
3.55 pm (cc-pVTZ), 3.93 pm (V), 3.38 pm (VI). There is,
however, a difference for the mean error, which is
0.98 pm in the cc-pVTZ basis, but slightly larger in the
ADF basis sets (1.26 and 1.09 pm for basis sets V and
VI, respectively); the standard deviation on the other
hand is slightly lower in the ADF basis sets: 0.95 pm (V)
and 0.83 pm (VI) versus 0.99 pm (cc-pVTZ). However,
roughly speaking, the cc-pVTZ results for BLYP are
similar to those in basis sets V and VI, which enables a

comparison of B3LYP with the pure DFT potentials in
ADF.

The mean error of B3LYP in the cc-pVTZ basis is
almost zero (0.05 pm); however, the standard deviation
is almost twice as large as those of Becke–Perdew or
PW91. The mean absolute error is either comparable
(PW91) or slightly better (Becke–Perdew, PBE) for the
B3LYP potential. Finally, the maximum error is slightly
larger for B3LYP compared with either Becke–Perdew,
PBE or PW91. As a whole, B3LYP performs as well as
the most accurate pure DFT potentials (Becke–Perdew,
PBE, PW91), although with a slightly increased maxi-
mum error and standard deviation of the mean error.

Metallocenes

Metallocenes are molecules where a metal atom is
sandwiched between two cyclopentadiene rings, which
can exist in two conformations: staggered or eclipsed
(Fig. 1).

The best known example of these metallocenes is
ferrocene, which has been studied in great detail in the
past by theoretical methods, and has been shown to be a
difficult molecule for which an accurate prediction of the
metal–ring distance could be obtained. Early HF cal-
culations reported an Fe–ring distance of 188 pm, which
is in poor agreement with the experimental distance of
166 pm. This could not be improved by employing lar-
ger basis sets, as it was established [24] that the HF limit
is only slightly better than the early HF calculation
(187.2 pm). Normally, such a poor performance could
be improved upon by using MP2 calculations; for in-
stance, the systematic study by Helgaker et al. (described
earlier in this paper) showed a mean absolute error of
13.0 pm for HF, and only 2.4 pm for MP2. However,
MP2 results for ferrocene [24] show a similarly dramatic

Table 8. BLYP and B3LYP
results (pm) in Dunning’s basis
sets

BLYP cc-pVDZ B3LYP cc-pVDZ BLYP cc-pVTZ B3LYP cc-pVTZ

Mean error 1.81 0.98 0.66 0.05
Standard deviation 1.06 0.99 0.87 0.94
Mean absolute error 1.90 1.14 0.96 0.73
Maximum error 3.80 3.55 2.06 1.93

Fig. 1. Structure of metallocenes
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performance. However, unlike HF that overestimates
the Fe–ring distance, MP2 underestimates it at 147–
149 pm [24] (depending on the number of electrons
correlated).

Calculations employing the CASSCF and CASPT2
methods perform much better in this respect, giving Fe–
ring distances of 171.6 and 161.7 pm, respectively [25].
Subsequently, after correcting the results for basis set
superposition errors, an estimated equilibrium value of
164.3 pm was obtained, which is in good agreement with
the experimental value of 166 pm. Also CCSD and
CCSD(T) calculations predict an equilibrium distance
(167.2 and 166.0 pm, respectively [4]) which is in good
agreement with the experimental data. Note however,
that the coupled-cluster distances were obtained by
calculating single-point energies at three Fe–ring dis-
tances, and then fitting the potential-energy curve with a
second-order polynomial to obtain the equilibrium
distance.

The metallocenes studied in this work are mangano-
cene (either doublet or sextet), ferrocene (singlet),
cobaltocene (doublet or quartet), nickelocene (singlet or
triplet) and ruthenocene (singlet). The geometry data
from experimental investigations (taken from Ref. [26])
are given in Table 9. The distance of the metal to the
center of the cyclopentadienyl rings differs quite some-
what for the five metal atoms as well as for the multiplet
state of the complex. For instance, for manganocene, a
difference of more than 32 pm in the distance is observed
between the doublet and sextet states.

The geometry of the metallocenes was optimized
using all the xc potentials reported in the first part of this
paper, employing a few different basis set sizes, ranging
from a minimal basis (I) to a TZ2P (VI). The core
electrons were either taken explicitly into account (all
electrons) or frozen in the calculations; in the latter
calculations, the frozen-core electrons comprise the 1s
electrons of carbon and for the first-row transition
metals up to either 3p (frozen core 3p; for Ru up to 4p)
or up to the 2p level (frozen core 2p; for Ru up to 3d).
For all three types, the optimizations were done in either
a nonrelativistic or a scalar relativistic (ZORA) calcu-
lation. The mean absolute errors of the computed
distances for the eight xc potentials in the four basis sets
are given in Tables 10 (nonrelativistic) and 11 (scalar
relativistic).

A general improvement of the accuracy is shown by
increasing the basis set size, which is most obvious for
the all-electron calculations. The mean absolute error,

averaged over the eight xc potentials, decreases from
7.70 to 1.77 pm. However, there are some potentials that
do not show this pattern; the error of the LDA potential,
for instance, decreases in going from basis set I (minimal
basis) to II (double-zeta valence), and increases if one
uses larger basis sets. The same pattern was reported in
the first part of this paper, but there it emerged only
after basis set III (double-zeta valence plus polarization)
and the error in basis set IV (triple-zeta valence plus
polarization) was still smaller than in basis II. Here, the
LDA error is larger in basis IV than in basis II, both if
one uses the frozen-core or the all-electron calculations.

The difference between the frozen-core 3p, frozen-
core 2p and all-electron results is not negligible. For
the minimal basis (I), the frozen-core 3p gives a better
performance than the all-electron calculations; for the
larger basis sets, the situation is reversed. In basis II,
the best performance is observed with the frozen-core
2p option, which gives a mean absolute error that is
0.2–0.3 pm smaller than that for the all-electron case.
In basis set IV, these two options perform equally well,
and considerably better (0.8–0.9 pm) than the frozen
core 3p option.

The ‘‘best’’ xc potentials are for the larger basis sets
and the all-electron/frozen-core 2p options, Becke–Per-
dew, PBE and PW91, as was reported in the first part of
this paper. For the frozen-core 3p option in the larger
basis sets, the LDA performs best; in basis II, the mean

Table 9. Experimental geometries [25] of metallocenes (pm)

Metal r(C–H) r(C–C) r(metal–ring)

Mn (doublet) – 141.8 172.0
Mn (sextet) 112.5 142.9 204.1
Fe 110.4 144.0 166.1
Co 109.5 143.0 172.2
Ni 108.3 143.0 182.3
Ru 113.0 143.9 182.3

Table 10. Mean absolute nonrelativistic (NR) errors (pm) for first-
row metallocenes

Exchange–correlation potential I II IV VI

Frozen core 3p
Becke–Perdew 7.43 2.77 2.25 –
BLAP3 6.88 5.66 4.99 –
BLYP 7.36 4.52 3.92 –
LDA 8.55 1.23 1.55 –
PBE 7.50 2.52 2.02 –
PW91 7.57 2.53 2.12 –
REVPBE 6.58 3.29 2.61 –
RPBE 7.00 3.53 2.81 –
Average 7.36 3.26 2.78 –
Frozen core 2p
Becke–Perdew – 1.77 1.39 –
BLAP3 – 4.58 4.05 –
BLYP – 3.49 2.99 –
LDA – 2.01 2.46 –
PBE – 1.60 1.29 –
PW91 – 1.60 1.33 –
REVPBE – 2.25 1.72 –
RPBE – 2.49 1.92 –
Average – 2.47 2.14 –
All electron
Becke–Perdew 7.68 2.05 1.39 1.00
BLAP3 7.21 4.92 4.08 3.18
BLYP 7.69 3.78 3.05 2.17
LDA 8.81 1.87 2.47 3.05
PBE 7.83 1.82 1.28 1.11
PW91 7.82 1.79 1.34 1.13
REVPBE 7.30 2.53 1.72 1.18
RPBE 7.23 2.78 1.93 1.30
Average 7.70 2.69 2.16 1.77
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absolute error is only 1.23 pm, a value not reached by
any other potential in any basis set with the frozen-core
3p option. However, using the frozen-core 2p or the all-
electron option, this value is reached in the larger basis
sets (IV, VI) by other xc potentials. In the minimal basis,
the BLAP3 and REVPBE give generally the ‘‘best’’
performance, but as the mean absolute error is about
4 times as large as the value in the larger basis sets, it is
of limited value.

The influence of the scalar relativistic corrections is,
apart from the all-electron calculations in basis VI,
small (0.2 pm) but improving. This effect is of the same
order of magnitude as the effect observed due to a slight
mismatch between the energy expression and the po-
tential in the ZORA approach, which leads to an opti-
mized geometry with zero gradient that may differ from
the point of lowest energy by some 0.1 pm. Therefore,
the effect of the relativistic corrections can safely be
ignored.

The all-electron results in basis VI show different
patterns for different xc potentials. For some, like
Becke–Perdew, PBE and PW91, the mean absolute error
increases relative to the nonrelativistic results, while for
others, like LDA, the error decreases. Still, these changes
are of the same small magnitude (0.2 pm) and therefore
are not significant.

For the first-row transition metals, the effect of the
inclusion of relativistic corrections is small, but for

ruthenocene, it probably can no longer be safely ig-
nored. As the relativistic corrections will have an effect
mainly on the Ru–ring distance and not as much on the
C–C or C–H distance, only the Ru–ring distance is taken
into account for the mean absolute error. The errors for
the xc potentials in several basis sets and with different
options for the core electrons are given in Table 12. As
expected, the relativistic corrections now do have a sig-
nificant effect on the values of the mean absolute error,
which are improved by an amount of 1.4–2.2 pm. The
same trends are observed as before, for example, gen-
erally speaking the error decreases with increasing basis
set size (apart from the LDA potential), the frozen-core
2p option performs better than the frozen-core 3p option
(except for the LDA potential), and BLAP3 and BLYP
perform significantly worse than the other potentials.

The multiplet states of cobaltocene, nickelocene and
manganocene lead in all cases to the same ground state,
respectively a doublet, a triplet and a doublet. The other
states are less favored by 21 kcal/mol (quartet cobalto-
cene), 14 kcal/mol (singlet nickelocene) and 14 kcal/mol
(sextet manganocene) with the Becke–Perdew xc poten-
tial in basis set IV using the all-electron option. These
values differ by a few kilocalories per mole with different
basis sets and/or xc potentials, but the relative ordering
of the multiplet states does not.

The relative ordering of the conformations of the
metallocenes is also rather constant over the range of xc

Table 11. Mean absolute scalar relativistic (SR) errors using the
zeroth-order regular approximation approach errors (pm) for first-
row metallocenes

Exchange–correlation potential I II IV VI

Frozen core 3p
Becke–Perdew – 2.47 2.01 –
BLAP3 – 5.31 4.71 –
BLYP – 4.20 3.66 –
LDA – 1.38 1.77 –
PBE – 2.22 1.78 –
PW91 – 2.26 1.88 –
REVPBE – 2.97 2.35 –
RPBE – 3.22 2.56 –
Average – 3.00 2.59 –
Frozen core 2p
Becke–Perdew – 1.54 1.18 –
BLAP3 – 4.21 3.66 –
BLYP – 3.14 2.63 –
LDA – 2.31 2.76 –
PBE – 1.40 1.07 –
PW91 – 1.41 1.11 –
REVPBE – 1.93 1.44 –
RPBE – 2.12 1.59 –
Average – 2.26 1.93 –
All electron
Becke–Perdew 7.83 1.72 1.19 1.22
BLAP3 7.37 4.53 3.69 2.74
BLYP 7.85 3.43 2.67 1.76
LDA 8.97 2.18 2.80 3.42
PBE 7.92 1.58 1.06 1.38
PW91 7.97 1.59 1.15 1.39
REVPBE 7.40 2.17 1.45 1.08
RPBE 7.33 2.39 1.59 1.12
Average 7.83 2.45 1.95 1.76

Table 12. Mean absolute SR/NR errors (pm) for the Ru–ring
distance

Exchange–correlation
potential

II/NR IV/NR II/SR IV/SR V/SR

Frozen core 3p
Becke–Perdew 9.01 6.69 6.84 4.54 –
BLAP3 15.64 13.43 13.02 10.89 –
BLYP 13.44 11.36 10.90 8.91 –
LDA 3.52 1.60 1.68 0.41 –
PBE 8.18 5.75 6.13 3.63 –
PW91 8.61 6.12 6.18 3.92 –
REVPBE 9.30 6.79 7.20 4.68 –
RPBE 9.72 7.17 7.63 5.04 –
Average 9.68 7.36 7.45 5.25 –
Frozen core 2p
Becke–Perdew 5.59 3.57 3.99 1.82 –
BLAP3 11.90 9.91 9.89 7.77 –
BLYP 9.84 8.07 7.91 5.99 –
LDA 0.39 1.28 1.02 2.96 –
PBE 4.82 2.73 3.36 0.99 –
PW91 5.12 3.21 3.54 1.32 –
REVPBE 5.87 3.62 4.29 1.91 –
RPBE 6.25 3.97 4.65 2.25 –
Average 6.22 4.55 4.83 3.13 –
All electron
Becke–Perdew – – 4.82 2.47 1.18
BLAP3 – – 10.83 8.64 7.42
BLYP – – 8.81 6.77 5.52
LDA – – 0.27 2.49 3.83
PBE – – 4.16 1.64 0.33
PW91 – – 4.22 2.10 0.60
REVPBE – – 5.17 2.62 1.29
RPBE – – 5.56 2.99 1.65
Average – – 5.48 3.72 2.73
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potentials and basis sets; in nearly all cases the eclipsed
conformation is favored. The energy difference between
the two conformations, however, differs between the
different metallocenes, 0.4 kcal/mol (doublet cobalto-
cene), 0.1 kcal/mol (quartet cobaltocene), 1.0 kcal/mol
(ferrocene), 1.2 kcal/mol (doublet manganocene),
0.01 kcal/mol (sextet manganocene), 0.1 kcal/mol (sin-
glet or triplet nickelocene) and 0.5 kcal/mol (rutheno-
cene), using the Becke–Perdew xc potential in basis
set IV. For quartet cobaltocene, sextet manganocene
and nickelocene, the energy difference is too small to be
considered significant, and both conformations are
equally favorable. Again, these values change somewhat
by using another xc potential and/or basis set, but the
relative ordering of the conformations remains roughly
intact.

Conclusions

The geometries of a set of small molecules were opti-
mized using eight different xc potentials in a few differ-
ent basis sets of Slater-type orbitals, ranging from a
minimal basis (I) to a TZ2P (VI). This enables a com-
parison of the accuracy of the xc potentials in a certain
basis set, which can be related to the accuracies of
wavefunction-based methods such as HF and coupled
cluster. Four different checks were done on the accuracy
by looking at the mean error, standard deviation, mean
absolute error and maximum error. It was shown that
the mean absolute error decreases with increasing basis
set size, and reaches a basis set limit at basis VI. With
this basis set, the mean absolute errors of the xc
potentials are of the order of 0.7–1.3 pm. This is com-
parable to the accuracy obtained with CCSD and MP2/
MP3 methods, but is still larger than the accuracy that
can be obtained with the CCSD(T) method (0.1–
0.2 pm). For the smaller all-electron basis sets the LDA
is found to perform well; generally speaking the best-
performing xc potentials are found to be Becke–Perdew,
PBE and PW91, which perform as well as the hybrid
B3LYP potential.

In the second part of this paper, we reported the
optimization of the geometry of five metallocenes with
the same potentials and basis sets, either in a nonrela-
tivistic or in a scalar relativistic calculation using the
ZORA approach. For the first-row transition-metal
complexes, the relativistic corrections have a negligible
effect on the optimized structures, but for ruthenocene
they improve the optimized Ru–ring distance by some
1.4–2.2 pm. In the largest basis set used, the absolute

mean error is again of the order of 1.0 pm. As the
wavefunction-based methods give a poor performance
for metallocenes (HF, MP2) or the size of the system
makes treatment with accurate methods such as
CCSD(T) in a reasonable basis set cumbersome, the
good performance of DFT calculations for these mole-
cules is very promising; even more so as DFT is an
efficient method that can be used without problems on
systems of this size, or larger.
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